Backtesting A Trading Strategy Part 1

How To Scrape S&P Constituents Tickers Using Python

Photo by the author

Introduction

Backtesting is a tool to measure the performance of a trading strategy using historical data. The backtesting process consists of three parts: 1. determining the universe of securities where we will invest in (e.g. equity or fixed income? US or emerging markets?); 2. gathering historical data for the universe of securities; and 3. implementing a trading strategy using the historical data collected.

In this article, I will discuss the initial step in the backtesting process: determining the universe of securities. If we focus our attention on trading US equities, then a natural choice is the Standard and Poor’s 500 Index which is composed of shares of the 500 largest companies in the United States. The S&P 500 also provides the most liquid stocks. We can also consider the S&P MidCap 400 and S&P SmallCap 600 indices.

Standard & Poor’s Dow Jones Indices

This section provides a comparison of the different S&P indices which can be considered as possible universe of stocks.

S&P 500 Index

The S&P 500 index (or S&P 500) is a market capitalization-weighted index of the 500 largest US companies. It is viewed as the best gauge of large-cap US equity market. The S&P 500 has 505 constituents with a median capitalization of USD 22.3B.

S&P MidCap 400 Index

The S&P 400 index (or S&P 400) is a market capitalization-weighted index. It serves as a benchmark for mid-cap US equity market. The S&P 400 has 400 constituents with a median capitalization of USD 4.2B.

S&P SmallCap 600 Index

The S&P 600 index (or S&P 600) is a market capitalization-weighted index. It serves as a benchmark for small-cap US equity market. The S&P 600 has 601 constituents with a median capitalization of USD 1.2B.

After identifying potential universe of stocks candidates, we need to collect the list of constituents for each candidate universe. The list of constituents is not available on the official S&P Dow Jones Indices website. The constituents are only provided to product subscribers. We therefore, need to find alternative data providers. After a quick search on Google, two candidates are available: Wikipedia and Barchart. Wikipedia provides the S&P constituents in the form of a HTML table, which we will need to retrieve using Python package BeautifulSoup for web scraping. Barchart provides the S&P constituents as convenient downloadable CSV files. You just need to create a basic account with them, which fortunately is free.

Scraping S&P Constituents Tickers

Step By Step

  1. Collect the S&P tickers from Wikipedia, and then from Barchart.
  2. Compare the S&P symbols from the two providers.

You can find the code below on https://github.com/DinodC/backtesting-trading-strategy.

Import packages

import pandas as pd
import requests as re
from bs4 import BeautifulSoup
import pickle

From Wikipedia

Set an id for each index

id = ['sp500', 'sp400', 'sp1000']

Set the pages we want to scrape S&P indices data from Wikipedia. Note that page for S&P 600 list of constituents does not exists. However, we can deduce the list from S&P 1000 which is just a combination of the S&P 400 and S&P 600.

input_file = {'sp500': 'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies',
              'sp400': 'https://en.wikipedia.org/wiki/List_of_S%26P_400_companies',
              'sp1000': 'https://en.wikipedia.org/wiki/List_of_S%26P_1000_companies'}

Define the files we want to store extracted data to

output_file = {'sp500': 'sp500_wikipedia.pickle',
               'sp400': 'sp400_wikipedia.pickle',
               'sp1000': 'sp1000_wikipedia.pickle'}

Define the S&P constituents lists from Wikipedia

sp500_wikipedia = []
sp400_wikipedia = []
sp1000_wikipedia = []
sp_wikipedia = {'sp500': sp500_wikipedia,
                'sp400': sp400_wikipedia,
                'sp1000': sp1000_wikipedia}

The code below scrapes data using Python package BeautifulSoup, and saves the extracted data using Python package pickle

for i in input_file:

    # Get URL    
    r = re.get(input_file[i])

    # Create a soup object 
    soup = BeautifulSoup(r.text)

    # Find S&P constituents table
    table = soup.find('table', attrs={'class', 'wikitable sortable'})

    # Get the rows containing the tickers
    tickers = table.find_all('a', attrs={'class', 'external text'})
    # find_all returns tickers and SEC fillings, get tickers only
    tickers = tickers[::2]

    # Create a list containing the tickers
    for j in range(len(tickers)):
        sp_wikipedia[i].append(tickers[j].text)

    # Save the list to a file
    with open(output_file[i], 'wb') as f:
        pickle.dump(sp_wikipedia[i], f)
    f.close()

Check the number of constituents, it should be equal to 505

len(sp500_wikipedia)
505

Check the number of constituents, it should be equal to 400

len(sp400_wikipedia)
400

Check the number of constituents, it should be equal to 1001

len(sp1000_wikipedia)
1001

Create a list of S&P 600 constituents given that the S&P 1000 index is the sum of S&P 400 and S&P 600 indices

sp600_wikipedia = list(set(sp1000_wikipedia) - set(sp400_wikipedia))

Check the number of constituents, it should be equal to 601

len(sp600_wikipedia)
598

In total, Wikipedia tickers sum up to 598 only, while the S&P Dow Jones Indices website indicates that there should be 601. The missing tickers, 3 in total, could be due to timing difference in updating the S&P 400 and S&P 1000 lists.

From Barchart

id = ['sp500', 'sp400', 'sp600']

We download the below files in csv format from Barhcart. Note that you need to sign up first, free of charge, before getting access.

input_file = {'sp500': 's&p-500-index-05-04-2019.csv',
              'sp400': 'sp-400-index-05-04-2019.csv',
              'sp600': 'sp-600-index-05-04-2019.csv'}

Define the files we want to store extracted data to

output_file = {'sp500': 'sp500_barchart.pickle',
               'sp400': 'sp400_barchart.pickle',
               'sp600': 'sp600_barchart.pickle'}

Define the S&P constituents lists from Barchart

sp500_barchart = []
sp400_barchart = []
sp600_barchart = []
sp_barchart = {'sp500': sp500_barchart,
              'sp400': sp400_barchart,
              'sp600': sp600_barchart}

The code below reads the data from the csv file, stores it to a DataFrame object, and saves the extracted information using pickle

for i in input_file:

    # Read data to a DataFrame
    data = pd.read_csv(input_file[i])
    # Exclude the last line since it does not contain a ticker
    data = data[:-1]

    # Create a list containing the tickers
    for j in range(len(data['Symbol'])):
        sp_barchart[i].append(data['Symbol'].iloc[j])

    # Save the list to a file
    with open(output_file[i], 'wb') as f:
        pickle.dump(sp_barchart[i], f)
    f.close()

Check the number of constituents, it should be equal to 505 according to S&P Dow Jones Indices website

len(sp500_barchart)
505

Check the number of constituents, it should be equal to 400 according to S&P Dow Jones Indices website

len(sp400_barchart)
400

Check the number of constituents, it should be equal to 601 according to S&P Dow Jones Indices website

len(sp600_barchart)
601

Comparison Between Wikipedia and Barchart

S&P 500 Index

Sort the lists

sp500_wikipedia.sort()
sp500_barchart.sort()

Compare the first 10 tickers

sp500_wikipedia[:10]
['A', 'AAL', 'AAP', 'AAPL', 'ABBV', 'ABC', 'ABMD', 'ABT', 'ACN', 'ADBE']
sp500_barchart[:10]
['A', 'AAL', 'AAP', 'AAPL', 'ABBV', 'ABC', 'ABMD', 'ABT', 'ACN', 'ADBE']

Compare all the tickers by calculating the difference between Wikipedia and Barchart

diff_wikipedia_barchart = list(set(sp500_wikipedia) - set(sp500_barchart))
diff_wikipedia_barchart
[]

There is no difference between the Wikipedia and Barchart lists.

S&P MidCap 400 Index

Sort the lists

sp400_wikipedia.sort()
sp400_barchart.sort()

Compare the first 10 tickers

sp400_wikipedia[:10]
['AAN', 'ACC', 'ACHC', 'ACIW', 'ACM', 'ADNT', 'AEO', 'AFG', 'AGCO', 'AHL']
sp400_barchart[:10]
['AAN', 'ACC', 'ACHC', 'ACIW', 'ACM', 'ADNT', 'AEO', 'AFG', 'AGCO', 'ALE']

Compare all the tickers by calculating the difference between Wikipedia and Barchart

diff_wikipedia_barchart = list(set(sp400_wikipedia) - set(sp400_barchart))
diff_wikipedia_barchart[:10]
['LPNT', 'NBR', 'AHL', 'DRQ', 'SPN', 'WAB', 'DNB', 'EGN', 'JKHY', 'GPOR']
len(diff_wikipedia_barchart)
28

Now, compare all the tickers by calculating the difference between Barchart and Wikipedia

diff_barchart_wikipedia = list(set(sp400_barchart) - set(sp400_wikipedia))
diff_barchart_wikipedia[:10]
['TREX', 'PEB', 'NGVT', 'XPO', 'CVET', 'PRSP', 'BHF', 'REZI', 'AMED', 'SRCL']
len(diff_barchart_wikipedia)
28

The difference between the two providers Wikipedia and Barchart is 28 tickers, which suggests that one of the two providers has a more up to date list.

S&P SmallCap 600 Index

Sort the lists

sp600_wikipedia.sort()
sp600_barchart.sort()

Compare the first 10 tickers

sp600_wikipedia[:10]
['AAOI', 'AAON', 'AAT', 'AAWW', 'AAXN', 'ABCB', 'ABG', 'ABM', 'ACET', 'ACLS']
sp600_barchart[:10]
['AAOI', 'AAON', 'AAT', 'AAWW', 'AAXN', 'ABCB', 'ABG', 'ABM', 'ACA', 'ACLS']

Compare all the tickers by calculating the difference between Wikipedia and Barchart

diff_wikipedia_barchart = list(set(sp600_wikipedia) - set(sp600_barchart))
diff_wikipedia_barchart[:10]
['GNBC', 'TREX', 'CLD', 'WCG', 'QHC', 'NGVT', 'FTK', 'DSW', 'PRSP', 'AMED']
len(diff_wikipedia_barchart)
51

Now, compare all the tickers by calculating the difference between Barchart and Wikipedia

diff_barchart_wikipedia = list(set(sp600_barchart) - set(sp600_wikipedia))
diff_barchart_wikipedia[:10]
['TCMD', 'IIPR', 'NBR', 'CSII', 'CCS', 'DRQ', 'DBI', 'SPN', 'TRHC', 'LPI']
len(diff_barchart_wikipedia)
54

In total, Wikipedia constituents sum up to 598 only, while Barchart sum up to 601 (complete):

  1. As previously noted, there are 3 tickers missing in Wikipedia list which could be due to timing difference in updating the S&P 400 and S&P 1000 lists.
  2. The difference between the two providers Wikipedia and Barchart is 51 tickers, which suggests that one of the two providers has a more up to date list.

Summary

In this article, we identified universe of securities candidates such as the S&P 500, S&P MidCap 400 and S&P SmallCap indices. We retrieved the constituents of each index from alternative data providers, namely Wikipedia and Barchart. The list of tickers for the S&P 500 is consistent between the two sources, while the list of tickers for the S&P MidCap 400 and S&P SmallCap 600 are not identical. There seems to be an inconsistency between the components of the S&P 400 and S&P 1000 indices from Wikipedia. As a result, we will consider the S&P constituents from Barchart in the next article where we will retrieve historical data for every ticker in every index.

Advertisement

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s